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Abstract—This work proposed and studied a method of automatically classifying
respiratory volume signals as high or low variability by means of non-linear analysis
of the respiratory volume. The analysis used volume signals generated by the
respiratory system to construct a model of its dynamics and to estimate the
quality of the predictions made with the model. Different methods of prediction
evaluation, prediction horizons and embedding dimensions were also analysed.
Assessment of the method was made using a database that contained 40 respiratory
volume signals classified using clinical criteria into two classes: low or high
variability. The results obtained using the method of surrogate data provided
evidence of non-linear determinism in the respiratory volume signals. A discriminant
analysis carried out using non-linear prediction variables classified the respiratory
volume signals with an accuracy of 95%.
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1 Introduction

THE POSSIBLE causes of breath-to-breath variability in the
pattern of breathing have been discussed (BRUCE, 1996a;
b; KHOO, 2000). Stochastic processes or dynamic behaviours
of the autonomic nervous system (ANS) can produce this
variability (MODARRESZADEH et al., 1990; JUBRAN et al.,
1997; BRACK et al., 2002). Analysis of respiratory variability
provides a new tool to study the action of chemoreflexes without
the application of external stimuli (VAN DEN AARDWEG and
KAREMAKER, 2002). Determination of the variability of the
respiratory volume also enables us to ascertain the ability of
patients to control the mean tidal volume in response to
alterations in respiratory demand (WRIGGE et al., 1999).

Recently, it has been described that respiratory variability was
reduced in patients with restrictive lung disease, compared with
that of healthy subjects (BRACK et al., 2002). One of the most
challenging problems in intensive care (TOBIN, 2001) is the
process of discontinuing mechanical ventilation, termed
weaning. It has been hypothesised that the variability of the
respiratory volume could be a convenient weaning criteria to
reduce the number of patients not successfully weaned (DEL
ROSARIO et al., 1997).
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The traditional techniques of data analysis in the time and
frequency domains are often not sufficient to characterise the
complex dynamics of respiration. Various attempts have been
reported to apply the concept of non-linear dynamics to the
analysis of complex physiological systems (RIGNEY et al., 1992;
TURCOTT and TEICH, 1996; ACHERMANN, 1994) and to distin-
guish between variations that are random and those that are
deterministic. The non-linear behaviour and time delays of
the respiratory mechanisms of the ANS, together with muscle
activity and the lungs, can introduce non-stochastic variability
into the respiratory system. In this way, several studies have
evidenced the non-linear, dynamic behaviour of the respiratory
system. Several methods describing the non-linear deterministic
variability of physiological time series have been proposed:
correlation dimension, Lyapunov exponents, Kolmogorov–
Sinai entropy etc. (BRUCE and DAUBENSPECK, 1995; SMALL

et al., 1999; AKAY et al., 2002). SCHREIBER and SCHMITZ (1997)
showed that non-linear prediction is an excellent method for
detecting non-linearity in signals where determinism has not
been established previously. Other approaches can present
limitations according to the fractal nature of the time series
(SAMMON et al., 1993; WESSEL et al., 1998; TAPANAINEN et al.,
1999) or even can lead to misinterpretations of the data (SMALL

et al., 1999). Cardiorespiratory synchronisation in humans and
non-linear analysis of heart rate and respiratory dynamics have
also been analysed using a prediction framework (HOYER et al.,
1998; 2002; CENSI et al., 2000).

In this work, non-linear prediction methods were applied to
find a set of indices that effectively characterise the variability of
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the respiratory volume. As respiratory volume can be measured
non-invasively, these indices may be advantageous in future
automatic diagnosis of patients.

2 Materials and methods

2.1 Analysed data

A group of 20 patients on weaning trials from mechanical
ventilation were studied in the Department of Intensive Care
Medicine at Santa Creu i Sant Pau Hospital. According to a
protocol approved by the local ethics committee and with
informed consent obtained, the patients were each placed under
two different levels of pressure support ventilation (PSV),
classified as low PSV (5� 2 cm H2O) and high PSV (12� 2 cm
H2O). The database therefore contains respiratory volume signals
with different variabilities, mainly owing to the fact that changes
in pressure support are often associated with changes in varia-
bility. The respiratory volume signalswere obtained bymeans of a
respiratory inductive plethysmograph. Respiratory volume at
each PSV level was recorded for 30min, with a sampling
frequency of 250Hz, and resampled at 10Hz for this study. The
40 recordings of 30min were classified by medical doctors into
two classes, low (CLV) or high (CHV) variability, using clinical
criteria based on respiratory rate, minute ventilation and a rapid
shallow breathing index (CAPDEVILA, 1998).

This work proposes a method of automatically classifying the
volume signals in high (HV) or low (LV) variability that does not
necessarily match low and high PSV levels. For out-of-sample
evaluation, the 40 volume recordings were organised into two
sets: a training set and a testing set. A training set was selected that
included patients presenting both CLV and CHV levels when the
PSV was changed (nine patients and 18 volume recordings). A
volume recording was considered correctly classified when the
automatic classification coincided with the classification made by
the medical doctor, considered as the gold standard.

2.2 Non-linear prediction

Fig. 1 shows CLV and CHV signals. The CHV signal in this
case is at a lower frequency and, qualitatively, displays greater
irregularity both in the waveform of a single cycle and in the
spacing of cycles. The amplitude range of the signals is
approximately the same. We sought to quantify this irregularity
by measuring the autoregressive predictability of the signal. The
time series is used to construct a model of the dynamics;
the model is then used to predict other signal segments. The
resulting prediction error quantifies irregularity.

There are different ways to construct dynamic models from
data. As all the state variables of the systems were not directly
measured or even known, we used the lag embedding technique
to represent the system’s state variables. By embedding the
scalar time seriesDt, the following vector sequence was created:

Dt ¼ (Dt, Dt�1, . . . ,Dt�(m�1))

where m is the embedding dimension. Each Dt is a point in the
m-dimensional embedding space, and the embedded time series
can be regarded as a sequence of points, one point at each time t.
Each point represents the state of the system at that time.

A deterministic data set sampled at discrete times can be
described by a discrete-time map

Dtþ1 ¼ F(Dt)

which is, however, immediately applicable only if the mapping
F is known. With F unknown, some assumptions about its
properties have to be made. With the minimum assumption that
the mapping F is continuous, the following prediction scheme
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can be constructed (KANTZ and SCHREIBER, 2000). This method
implements a non-linear regression model by stitching smoothly
together a large number of locally linear models. The method
works as follows: to predict the future state Dtþ1 given the
present stateDt, the state that is closest toDt with respect to some
norm is searched. Let us say that this closest point has time index
a. The definition of determinism is that future events are set
causally by past events. Dt describes the past events to Dtþ1.
SimilarlyDa describes the past events to the measurementDaþ1.
If Dt is close to Da, and if the system is deterministic, then it is
expected that Daþ1 will also be close to Dtþ1. In the same way,
Daþh will be used as a predictor of Dtþh that will be called Ptþh.

Every measurement of a continuous quantity is only valid up
to some finite resolution, and this fact has to be taken into
account. The finite resolution implies that looking for the single
closest state is no longer the best that can be done, as interpoint
distances are contaminated with an uncertainty. All points within
a close region in phase space have to be considered to be equally
good predictions a priori. Then the proposed prediction algo-
rithm to be used forms a neighbourhoodU(Dt) around the point
Dt. For all pointsDai

2 U(Dt), that is, all points close toDt, look
up the individual predictions Daiþh. Then the matrix H of the
application {Daiþh} ¼ H{Dai

} is obtained that transforms the
points of the neighbourhood U(Dt) into their predictions.
Finally, the prediction Ptþh is obtained by applying the matrix
H to the vectorDt. Two ways have been considered to define the
neighbourhood

(i) the neighbours inside a hypersphere of radius e around
point Dt

(ii) the K neighbours closest to point Dt.

Given a method for making a prediction Ptþh, an actual
measurement of Dtþh is needed to decide if the prediction is
good or bad. The difference between Ptþh and Dtþh is the
prediction error, which informs us about the quality of the

Fig. 1 Respiratory volume recordings classified by medical doctors
as (a) low variability (CLV) and (b) high variability (CHV)
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prediction. As a single prediction could be good or bad just by
chance, to give a more meaningful indication of the determinism
in the data, an average of many prediction errors should be taken.

Two different methods have been considered to define
this indication of determinism: cross-prediction and leave-
one-out auto-prediction. In the cross-prediction approach, the
time series is broken intoM segments. For each of theM segments,
one at a time, the model is fitted, and then residuals are calculated
on each of the other segments. The residuals are summarised by
one number, the mean absolute value. The result is an M6M
matrix of cross-predictabilities. In this study, the respiratory
volume data set at each PSV level, which contains 18 000
samples, has been divided into M¼ 3 segments of 6000
samples. In this case, the 363 matrix has 6 entries (the diagonal
elements that correspond to self-prediction are not computed), and
their mean value is computed in each patient for each PSV level.

In the leave-one-out auto-prediction, the time series of length
N is modelled N different times: for each model, a single data
point is left out when the model is fitted, and the residual for the
model is computed only for the left-out data point. The result is a
set of residuals, one for each point, that provide an estimate of
the prediction error of a model. In this study, the respiratory
volume data set at each PSV level was divided into nine subsets
of N¼ 2000 samples. In this way, the mean prediction error
related to each patient for each PSV level corresponded to the
mean absolute value of the prediction errors in the nine subsets.

A preprocessing step was applied to each respiratory volume
data set to improve the analysis of the results. Each respiratory
volume signal was normalised by subtraction by its mean value
and division by its standard deviation. Figs 2a and b show
the actual measurements and predictions for the respiratory
volume of a patient with clinically labelled low and high
variabilities (CLV and CHV), respectively. The different
quality of the prediction is shown comparing CLV and CHV.

2.3 Parameter setting

The first analysis related to the non-linear prediction was
performed to choose between auto-prediction or cross-predic-
tion methodologies. Three patients (CRR,MMX and SAT), who
clinically presented two different variability levels (CLV and
CHV) when the PSV was changed, were randomly selected for
the analysis. An embedding dimension m¼ 2 was considered.
Two kinds of neighbourhood were analysed: the neighbours
inside a hypersphere of radius e¼ 0.2 and the K¼ 20 closest
neighbours. Tables 1 and 2 present, as an example, the values
obtained in patient CRR using the neighbours inside a hyper-
sphere and the K closest neighbours, respectively. In the three
patients analysed, the auto-prediction methodology presented
the best statistical by significant differences (p-value) when CLV
and CHV signals were compared. This methodology has there-
fore been selected for the following steps.

To decide the best kind of neighbourhood to discriminate the
different irregularities of the respiratory volume, in low and high
variabilities, the following neighbourhoods were considered: the
neighbours inside hyperspheres of radius e¼ 0.1, 0.2 and 0.3 and
the K¼ 20 closest neighbours. The same three patients were
analysed, and an embedding dimension m¼ 2 was considered.
Table 3 presents, as an example, the values obtained in patient
CRR. In the three patients analysed, the statistical significance (p-
value) obtained when the CLV and CHV signals were compared
was found not to be dependent on the different neighbourhood
methodology. Then, as the radius of the hyperspheres could be
dependent on the embedding dimension, the K closest neighbours
methodology was selected for the following steps.

The following analysis was performed to select the best
prediction horizon h. For each patient and for each PSV level,
the mean respiratory period was calculated. This mean respiratory
88 M
period translated to sample units is called hTtot. Three prediction
horizons were considered: 0.5 hTtot,hTtot and 2 hTtot. The three
patients were analysed, and the embedding dimension m¼ 2 was
considered. Table 4 presents, as an example, the values obtained
in patient CRR using the different prediction horizons. In the three
patients analysed, the statistical significance (p-value) obtained
when CLV and CHV signals were compared was found not to be
dependent on the considered h value. A prediction horizon of hTtot
was selected for the following steps.

2.4 Non-linear determinism in the respiratory volume signal

The typically slower frequency of the CHV signals suggests
that a frequency-domain analysis using, for example, power
spectrum analysis, could be effective at performing the discri-
mination. To assess to what extent our non-linear prediction
method processes information not accessible to the linear
method, we used the method of surrogate data (THEILER et al.,
1992; SCHREIBER and SCHMITZ, 1996). This method involves

Fig. 2 (—) Actual measurement and (�) one-step prediction of
respiratory volume of patient with clinically labelled (a)
low and (b) high variabilities. Mean respiratory period has
been selected as prediction horizon

Table 1 Mean� standard deviation for mean prediction error of
patient CRR with m¼ 2, e¼ 0.20, when leave-one-out auto-prediction
and cross-prediction are considered and statistical significance
(p-value) when low and high variability levels are compared

CLV CHV p-Value

Leave-one-out
auto-prediction

0.41� 0.06 0.82� 0.11 0.008

Cross-prediction 0.45� 0.04 0.90� 0.06 0.028
edical & Biological Engineering & Computing 2004, Vol. 42



generating synthetic volume signals, called surrogate data, with
the same Fourier spectra, mean, standard deviation and other
percentiles as the original data. All the information that could be
accessed by a linear power spectrum analysis, whatever form
that analysis might take, is contained in the surrogate data. The
algorithm to generate this surrogate data is based on the null
hypothesis that the data come from a stationary linear process
with Gaussian white noise inputs.

A set of surrogate data was generated for each volume signal
tested. For all the signals (original data and surrogate data), a
non-linear index was computed. Then, a statistical test was
applied between the set of surrogate data and the original data.

If the null hypothesis was rejected, this suggested that the
original data were due to a non-linear deterministic process
and=or non-Gaussian inputs or non-stationarity. In the case of
the signals analysed in this study, ten series of surrogate data
were generated for each of the volume signals of the three
patients CRR, MMX and SAT. The non-linear index selected
was the mean prediction error.

2.5 Discriminant analysis

A discriminant analysis was applied to obtain a discriminant
function that would enable the automatic classification of the
volume signals as high (HV) on low (LV) variability. To know
the best variables to be introduced in the discriminant analysis, a
previous non-parametric analysis of variance test (Mann–
Whitney) was used to analyse statistically the differences
between the respiratory volume signals with CLV and CHV.
Different variables from the classical time-domain analysis and
from the described non-linear prediction analysis were considered.

In the classical time-domain analysis of the respiratory
volume signal, for each patient and for each PSV level, the
following time series were obtained: breath duration Ttot,
inspiration time Ti and tidal volume Vt, related to the respiratory
cycles of each 30min recording. From these time series, the
mean values of Ttot, Ti and Vt were obtained (Ttot,Ti and Vt).

From the respiratory volume signals training set, different
discriminant functions were obtained and subsequently vali-

Table 2 Mean� standard deviation for mean prediction error of
patient CRR with m¼ 2, K¼ 20, when leave-one-out auto-prediction
and cross-prediction are considered

CLV CHV p-Value

Leave-one-out
auto-prediction

0.36� 0.05 0.76� 0.09 0.008

Cross-prediction 0.43� 0.03 0.88� 0.06 0.027

Table 3 Mean� standard deviation for mean prediction error of
patient CRR with m¼ 2 when different radii e of hyperspheres and
K¼ 20 closest neighbours are considered

CLV CHV p-Value

e¼ 0.1 0.41� 0.05 0.81� 0.09 0.008
e¼ 0.2 0.41� 0.06 0.82� 0.11 0.008
e¼ 0.3 0.38� 0.06 0.81� 0.11 0.008
K neighbours 0.36� 0.05 0.76� 0.09 0.008

Table 4 Mean� standard deviation for mean prediction error of
patient CRR with m¼ 2 when different prediction horizons h are
considered

CLV CHV p-Value

0.5 hTtot 0.34� 0.07 0.67� 0.09 0.008
hTtot 0.36� 0.05 0.76� 0.09 0.008
2 hTtot 0.55� 0.07 0.81� 0.09 0.008
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dated with the testing set. The validation was performed by
comparing the results obtained from the discriminant functions
with the classification made by medical doctors.

3 Results

Time-domain analysis of the respiratory volume signal was
performed previously. Table 5 shows the results obtained with
the mean values of Ttot, Ti and Vt when low and high variability
levels, defined using clinical criteria, were compared in all 20
patients. Ttot and Ti variables present statistically significant
differences (p50.0005 and p¼ 0.03, respectively). This change
in Ttot reflects the slow frequency of the CHV signals and
the differences between the populations of signals. However,
as the populations overlap substantially, the classification of
individual signals will not be very accurate.

Table 6 shows the results obtained when the surrogate data
method was applied to the respiratory volume signals of CLV and
CHV in the three selected patientsCRR,MMXandSAT,who had
both CLV and CHV recordings. Themean prediction errormpe of
the original signalQD and themean value� standard deviation of
the mpe of the surrogate data (mH � sH) are presented. For both
low and high variability recordings of the three patients, the
respiratory volume signals of the patients analysed had signifi-
cant differences with respect to the surrogate data generated,
and so the null hypothesis could be rejected.

So that we can analyse the level of irregularity in the
respiratory volume signals related to high variability in compar-
ison with that related to low variability, Table 7 shows the mean
prediction errorsmpe obtained form¼ 2when all the patients are
considered. The results show a statistically significant difference
(p50.0005) between both groups (Mann–Whitney test).

The role of the embedding dimension m in the prediction
errors was analysed in all the patients for each of the PSV levels.
Fig. 3 shows, as an example, the relationship between the mean
prediction error and the embedding dimension for the patient
CRR. The line labelled CRR20 belongs to the CHV signal, and
CRR06 belongs to the CLV signal.

Another way to characterise predictability involves finding
the embedding dimension needed to model the dynamics of the
patients with a low prediction error. For example, in patient CRR
(Fig. 3), an embedding dimension m¼ 8 is needed to obtain a
mean prediction error below 0.4 when analysing the CHV
signal, whereas m¼ 2 is enough to obtain the same prediction
error for the CLV signal. The values of the embedding dimen-
sion m needed to model the dynamics of the signals with a

Table 5 Mean� standard deviation for classical time-domain
analysis variables when low and high variability levels are compared
in all 20 patients

CLV CHV p-Value

Ttot 2.48� 0.65 3.63� 1.04 <0.0005
Ti 0.88� 0.12 1.04� 0.30 0.030
Vt 466� 195 601� 265 ns

Table 6 Values of mean prediction error for volume signals and
surrogate data with statistical significance

QD mH� sH p-Value

CRR–CLV 0.36 0.49� 0.01 <0.0005
CRR–CHV 0.72 0.75� 0.01 <0.0005
MMX–CLV 0.24 0.31� 0.01 <0.0005
MMX–CHV 0.33 0.39� 0.01 <0.0005
SAT–CLV 0.31 0.40� 0.01 <0.0005
SAT–CHV 0.70 0.79� 0.01 <0.0005
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prediction error e of 0.35, 0.40, 0.45 (me35, me40 and me45,
respectively) have been calculated. Table 7 shows the values of
me35, me40 and me45 when all the patients were analysed. The
embedding dimension needed to model the dynamics of the
patients with a low prediction error showed a statistically
significant difference (p50.0005) between low and high varia-
bility signals (Mann–Whitney test).

The aim of the last part of this studywas to obtain discriminant
functions able to discriminate low and high respiratory pattern
variability. From the respiratory volume signals of the training
set, different discriminant functions were constructed using each
single variable presented in Table 7 (mpe,me35,me40,me45), as
well as Ti and Ttot variables. Table 8 shows the critical threshold
of the discriminant functions, related to each one of the
considered single variables, and the results achieved during
the evaluation process with the 22 respiratory volume signals
of the testing set. In this process, a signal is considered false HV
when the discriminant function classifies it as high variability
(HV) when it was considered by the medical doctor to be low
variability (CLV), and a signal is considered as false LV when
the discriminant function classifies it as low variability (LV),
when it was considered by the medical doctor to be high
variability (CHV). Accuracy is the percentage of volume
signals correctly classified. The variables obtained with the
non-linear prediction methodology present better discriminant
results than the best variable proposed from the time-domain
analysis. Table 9 shows the results obtained using discriminant
functions of two variables. The mean prediction error mpe and
the mpe combined with the embedding dimension needed to
obtain an mpe of 0.40 or 0.45 achieve an accuracy of 95%.

4 Discussion and conclusions

To analyse respiratory pattern variability in respiratory
volume signals, non-linear prediction methods were applied.

Table 7 Mean� standard deviation of mean prediction errors mpe
and embedding dimensions m needed to model dynamics of patients
with reduced mean prediction error e of 0.35, 0.40 and 0.45 (me35,
me40 and me45, respectively)

CLV CHV p-Value

mpe 0.35� 0.09 0.63� 0.08 <0.0005
me35 3.3� 2.0 6.8� 1.7 <0.0005
me40 2.4� 0.7 5.9� 1.5 <0.0005
me45 2.1� 0.3 5.1� 1.4 <0.0005

Fig. 3 Prediction errors mpe obtained as function of embedding
dimension m for patient CRR. Lines labelled CRR20 and
CRR06 belong to CHV and CLV signals, respectively
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The volume time series were used to construct a model of the
respiratory system dynamics, and the accuracy of the predictions
made from the model were analysed. Two different ways were
considered to define the indication of determinism: cross-
prediction and leave-one-out auto-prediction. The auto-predic-
tion methodology was selected because it presented the best
statistically significant differences when CLV and CHV signals
were compared. Two kinds of neighbourhoodwere analysed: the
neighbours inside a hypersphere of radius e and theK neighbours
closest to a point in the phase space. The K closest neighbours
methodology was selected because it produced the same statis-
tical significance level as the neighbours inside a hypersphere,
and this last method presented the inconvenience that the radii of
the hyperspheres could be dependent on the embedding dimen-
sion. The incidence of different prediction horizons h was also
considered. As the results were found not to be dependent on the
considered h value, the mean respiratory period was selected as
the prediction horizon.

Highly statistically significant differences were obtained
when the mean prediction error mpe of the volume signals
clinically classified as low variability (0.35� 0.09) were
compared with high variability signals (0.63� 0.08):
p50.0005. The embedding dimension needed to model the
dynamics of the system with a low prediction error is also a
good parameter to discriminate different respiratory patterns.

The results obtained using the surrogate data method mean
that the non-linear prediction method detects signs of non-
linearity, non-stationarity or non-Gaussianity in the signals.
However, note that the prediction errors for the surrogate data
in the different classes of CHV and CLV signals follow roughly
the same pattern of variability as for the original data. That is,
there is a lower non-linear prediction error for surrogates from
CLV signals than for surrogates from CHV signals. As the
surrogate data have, by construction, no statistically identifiable
non-linear, non-stationary, or non-Gaussian components, this
suggests that it may be possible to find some linear analysis
method that can perform a discrimination between CLV and
CHV similar to the one using non-linear prediction. This does
not necessarily mean, however, that the physiological mechan-
isms generating the linear structures are themselves linear. The
hypotheses on the physiological mechanisms governing respira-
tory volume variability are based on the non-linear dynamic
interactions between various components of the respiratory
control system, such as the lung vagal afferents and the
respiratory pattern generator, or through the propagation of
stochastic disturbances around the chemoreflex loops (BRUCE,
1996a; KHOO, 2000).

Table 8 Validation, using test set, of discriminant functions of single
variables obtained from training set

Critical threshold False HV False LV Accuracy (%)

Ttot 2.86 4 1 77
Ti 0.97 4 3 68
mpe 0.50 1 0 95
me35 5.3 0 2 91
me40 4.4 1 1 91
me45 3.9 3 1 82

Table 9 Validation, using test set, of discriminant functions of two
variables obtained from training set

False HV False LV Accuracy (%)

mpe and me35 2 1 86
mpe and me40 0 1 95
mpe and me45 0 1 95
edical & Biological Engineering & Computing 2004, Vol. 42



The discriminant analysis carried out with the training set,
when the mean prediction error was used, obtained discriminant
functions able to classify, with an accuracy of 95%, the test
respiratory volume signals, whereas the discriminant analysis
using classical time-domain variables presented lower accuracy
(77%). These results indicate that non-linear prediction is a
promising methodology to study respiratory pattern variability.
It should be validated by a larger number of patients, especially
to investigate further the discriminant functions.

The clinical relevance of such a method to discriminate
respiratory volume variability is related to the study of the
action of chemoreflexes without application of external stimuli
and the analysis of the ability of patients to control mean tidal
volume in response to alterations in respiratory demand.
Furthermore, thismethod could be a convenient weaning criterion
to reduce the number of patients not successfully weaned.
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MONTSERRAT VALLVERDÚ received the PhD in Biomedical Engineer-
ing from the UPC in 1993. She is Associate Professor in the DCE at
UPC. Her research interests include complexity analysis of the hidden
information in cardiac and respiratory signals.

SALVADOR BENITO is a Professor in the Department of Medicine, at
the University Autonoma of Barcelona (UAB), Spain. His research
interests include lung function, mechanical ventilation and critical care.
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